
SLL-N2 Liquid Nitrogen Level Monitor/Controller

Warranty

Sycon Instruments, Inc.

Sycon Instruments, Inc. (Sycon) warrants that all electronic instrumentation equipment manufactured by Sycon shall be free from defects in materials and workmanship for a period of 1 year from date of shipment. Mechanical vacuum components such as feedthroughs, sensors, cables, and shutters shall be warranted for a period of six months from the date of shipment. For the duration of the warranty period Sycon will, at its option, either repair or replace any part which is defective in materials or workmanship without charge to the purchaser. The foregoing shall constitute the exclusive and sole remedy of the purchaser for any breach by Sycon of this warranty.

This warranty does not apply to any equipment which has not been used in accordance with the specifications recommended by Sycon for the proper and normal use of the equipment. Sycon shall not be liable under any circumstances for consequential or incidental damages in connection with, or arising out of the sale, performance, or use of the equipment covered by this warranty.

This warranty is in lieu of all other warranties by Sycon, expressed or implied, including the implied warranty of merchantability, the implied warranty of fitness for a particular purpose, and warranty against infringement of any patent.

Equipment Return

Before returning any equipment to Sycon contact the Product Service Department. You must obtain a Return Authorization (RA) number from Sycon Instruments and indicate this number on all shipping cartons and correspondence. Ship all items in suitable containers with adequate protection from outside damage. Also include a short description of the problem or condition to facilitate processing.

Sycon Instruments, Inc. 6757 Kinne Street Syracuse, NY 13057-1215
P (315) 463-5297
F (315) 463-5298
www.svcon.com

Preface

Sycon Instruments, Inc. reserves the right to change any information contained in this manual without notice.

 $^{\odot}\,$ Copyright Sycon Instruments, Inc. 1986 - 2009

Table of Contents

Warranty	i
Preface	ii
Table of Contents	iii
List of Figures	iv
List of Tables	iv
General Information	1
SLL-N2 Specifications	1
User Interface Quick Reference	2
Definition of flicker, flash, and blink:	2
Operation	7
Front Panel Description	7
Power-up:	
SLL-N2 Programmable Parameters:	11
Operation	
Dip switch settings description:	13
Installation	17
Calibration and Theory	21
Theory of operation:	
Calibration Procedure for use with LN2:	22
Set-point adjustment procedures	22
Troubleshooting	
Serial Communications:	
External connections:	35
Relay 1 (alarm relay) operation:	
Relay 2 (fill relay) operation:	
Relay 2 (fill relay) timeout:	35
Index	39

List of Figures

Figure 1.1: Front Panel LEDs	2
Figure 2.1: Front Panel	
Figure 2.2: Back Panel	
Figure 2.3: POST-2 screen legend	10

List of Tables

Table 1.1: SLL-N2 Specifications	1
Table 2.1: POST-2 screen legend information	
Table 2.2: Decoding LED blocks for POST-2 screen areas 1-3	10
Table 2.3: SLL-N2 programmable parameters, ranges and defaults	11
Table 2.4: SLL-N2 operations accessible via back panel pushbuttons	12
Table 2.5: Dipswitch definitions	
Table A.1: Other assorted variables available through serial interface	31
Table A.2: Key for "5BF8" variable query	
Table A.3: Key for "5F8A" status query Bits D0-D15	
Table A.4: Key for "5F8A" status query Bits D16-D31	
Table B.1: DB-9 pin-out	

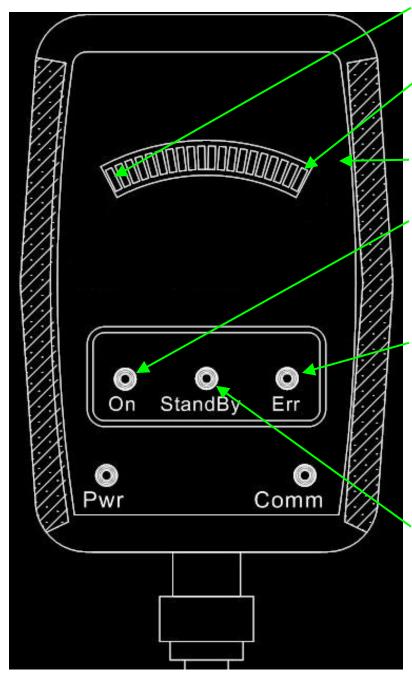
SECTION 1

General Information

General Information

SLL-N2 Specifications

Relay contact rating (1)	2A@30VDC, 0.5A@125VAC
Relay contact maximum ratings (1)	60W, 65VA, 2A,or 125VAC (load must not exceed any of
Relay contact maximum ratings (1)	
	these ratings)
Current consumption	360ma (Bar mode) 160 ma (needle mode) (@5V)
Input voltage	4.3V-5.1V
Sensor minimum capacitance	50pF
Sensor maximum capacitance	6500pF
SLL-N2 resolution	.15pF
Minimum sensor length (2)	8.25in
Maximum sensor length (2)	64FT
Liquid Level Resolution (2)	.15cm
Level Accuracy (3)	5% display, 2% or better via computer interface
Fill operation delay	Programmable 032 seconds in .321s increments
Fill timeout	Programmable up to 5:47:54 (H:MM:SS) in .321second
	increments, or no timeout
Serial port	Dual mode RS232/RS485
Serial bauds	9600, 115200
Ambient Operating Temperature	050 Degrees C
(SLL-N2)	-


1: Relay contacts are not protected. If driving inductive loads such as a solenoid you must protect the relay with a MOV/TVS (AC), capacitor (AC/DC), or diode (DC).

2: Using Sycon sensor in LN2 (2.28pF/cm in air or N2 gas, 3.28pF/cm in LN2, for a sensitivity of 1pF per cm of fill)

3: Since display has 20 graduated bars, 5% is level accuracy when viewing SLL-N2. Through the computer interface, level readings may be acquired to better accuracy. 2% accuracy is guaranteed through the operating temperature range. Variations in liquid temperature and pressure also have an impact on level reading, as the relative permittivity of the measured liquid changes with temperature and pressure.

Table 1.1: SLL-N2 Specifications

User Interface Quick Reference

If this LED is flickering, the SLL-N2 has lost the low level calibration. Re-calibrate the SLL-N2.

If this LED is flickering, the SLL-N2 has lost the high level calibration. Re-calibrate the SLL-N2.

Flashing LEDs in the LED BAR show the level low and level high set-points

If this LED is blinking, the SLL-N2 is in the "force fill on" mode. The fill will be requested on regardless of the level. If this light is on solid, the fill is being requested because the level is below the low level set-point.

If this LED is blinking the SLL-N2 cannot obtain a reading. Possible causes: The sensor is disconnected or damaged, or the liquid is incompatible with the sensor. If this LED is on solid, the SLL-N2 has obtained a reading but this reading is out of range (<-20% or >120% full). Possible causes: SLL-N2 needs to be calibrated.

If this LED is blinking, the SLL-N2 is in the "force fill off" mode. This mode can be initiated by the user, or can be caused automatically by a 'fill timeout'. The fill will be requested off regardless of the level. If this light is on solid, the fill is being requested off because the level is above the high level set-point.

Figure 1.1: Front Panel LEDs

Definition of flicker, flash, and blink:

- Flickering means the LED turns on and off very quickly, too quickly to count
- Flashing means the LED "inverts" briefly (about ¼ second) every 2 seconds. Inverting means to turn off it it was on or on if it was off.
- Blinking means the the LED is on for a ½ second and off for a ½ second; in other words, the LED turns on and off at a steady pace

SECTION 2

Operation

Operation

Front Panel Description

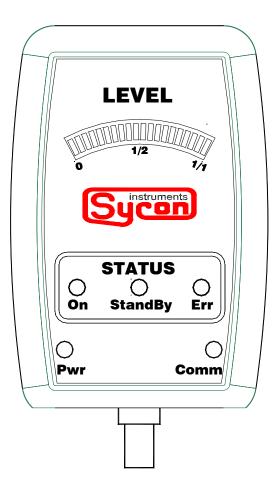


Figure 2.1: Front Panel

The SLL-N2 front panel houses the various display LEDs.

LED Bar: The LED bar displays Nitrogen level, and other information during start-up.

"On" Indicator:

The "On" indicator LED lights to indicate filling or forced filling.

"Standby" Indicator:

The "Standby" indicator lights to indicate standby status (no filling) or forced standby status.

"Error" Indicator:

The "Error" indicator LED lights to indicate an error condition (either a reading cannot be obtained, or the obtained reading is out of range).

"Power" Indicator: The "Power" indicator LED lights to indicate unit power is on.

<u>"Comm" Indicator:</u> The "Comm" indicator LED lights to communication is taking place via the RS-232 port.

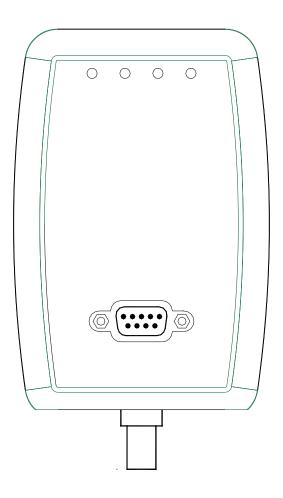


Figure 2.2: Back Panel

The SLL-N2 back panel houses the RS-232 DB-9 connector, and the four pushbutton switches used for performing various operations (calibration, level set point changing, etc.)

Power-up:

On power-up, the SLL-N2 first does an **LED test**, where all of the LEDs are lit for 2.5 seconds and then go off for 1 second. After this lamp test, the SLL-N2 displays **dipswitch settings and software version** for 2.5 seconds (this is called the POST-2 screen/mode). During the 2.5 seconds POST-2 screen, pressing any button will extend the duration of this screen to up to 25 seconds.

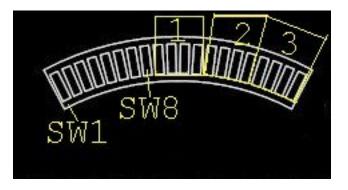


Figure 2.3: POST-2 screen legend

During the POST-2 screen, the first 8 LEDs (from the left as the user looks at the SLL-N2) show the dipswitch settings, where a lit LED means the switch is ON.

Area (per legend above)	Description
Area 1	Displays SLL-N2 'family', for vendor specific behavior.
Area 2	Displays SLL-N2 software major version.
Area 3	Displays SLL-N2 software minor version.

Table 2.1: POST-2 screen legend information

LED pattern (left to right, orange is ON)	Value
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

Table 2.2: Decoding LED blocks for POST-2 screen areas 1-3

SLL-N2 Programmable Parameters:

The SLL-N2 is designed to operate as a level indicator as well as a level controller. This SLL-N2 works as a controller for bulk filled (filled via a storage tank of the liquid) as well as condensation filled systems. The behavior of the SLL-N2 can be modified by changing programmable parameters (see table below):

Data Item	Range	Default	Hash (hex)
Empty Calibration Frequency (1)	4KHZ176KHZ	72KHZ	A926
Full Calibration Frequency (1)	4KHZ176KHZ	56KHZ	F89C
Level Set-point Low (2)(4)	0%100%	92%	8BA1
Level Set-point High (2) (4)	0%100%	97%	39E0
Fill Relay Delay ON (3)	0100 measurements	32 measurements	99B2
Fill Relay Delay OFF (3)	0100 measurements	32 measurements	E85C
Fill Relay Timeout (3)	065000 measurements	0 (no timeout)	C254
Alarm Set-point Low (2) (4)	0%100%	5%	44D5
Alarm Set-point High (2) (4)	0%100%	100%	D382

1: SLL-N2 enforces 1K minimum difference between calibration point frequencies, and enforces Empty frequency > Full frequency

2: SLL-N2 enforces a 2% minimum difference between low and high set-points (hysteresis) and enforces High set-point > Low set-point

3: 1 measurement = 321 milliseconds; 32 measurements ≈ 10 seconds.

4: For all percentage based settings, 0% = empty; 100% = full.

Table 2.3: SLL-N2 programmable parameters, ranges and defaults

Operation

Pressing the buttons on the back of the SLL-N2 can perform normal operations on the SLL-N2. These operations include calibration, level set point changing, etc. In order to perform one of these operations, simply press the button (or buttons in combination) for about ½ second. When the LEDs in the LED bar flash, the SLL-N2 has performed the selected operation. Note that these operations can be locked out (by turning on one of the switches on the internal dip switch). If the operation is locked via the switch, or is disabled because the reading is in error, the SLL-N2 will not 'flash' the LED bar.

Key	Description	Lock	Operation
Sequence		SW	
0000	Low Level Calibrate (1)	S1	Make the current frequency reading the empty calibration point
000	High Level Calibrate (1)	S1	Make the current frequency reading the full calibration point
0000	Restore factory calibration	S1	Restores calibration points to the factory default.
0080	Force Fill On	S2	Forces activation of fill relay , places gauge in "force fill on" mode. Note the fill relay is still subject to the fill relay timeout.
0004	Force Fill Off	S2	Forces de-activation of fill relay, places gauge in "force fill off" mode.
0084	Remove Forces	S2	Restores normal operation of fill relay.
0080	Fill Set-point Low set (2)	S3	Makes the current level the fill level low set-point.
0004	Fill Set-point High Set (2)	S3	Makes the current level the fill level high set-point.
0080	Restore factory fill set-points	S3	Restores fill low and fill high set-points to their factory default.
0000	Restore all factory settings	S4	Same as above but also erases calibration and removes forces. Ignores S1, S2, and S3 lock settings!

1: This operation not allowed if error LED is blinking.

2: This operation not allowed if error LED is blinking or on solid.

NOTE: Button '1' is far left button and button 4 is the far right button, when looking at the back of the SLL-N2.

Table 2.4: SLL-N2 operations accessible via back panel pushbuttons

Dip switch settings description:

Inside the SLL-N2 there is an 8-position dipswitch. To access the switch, remove the 2 screws on the back panel and remove the front cover. Dipswitches are ON when pointing "down" (see arrow on switch).

SW#	Descripti	Description		ior when SW removed or		Behavior when switch installed and ON
SW1	Calibrate	lockout	Calibration allowed	unlocked and there	fore	Calibration locked; cannot be performed. (3)
SW2	Forces loo	Forces lockout		ocked and therefore	Forces locked; cannot be performed. (3)	
SW3	Set-point	lockout	Set-point changes unlocked and therefore allowed.		Set-point locked; cannot be changed. (3)	
SW4	Factory R lockout	estore	Factory restore allowed.		Factory restore not allowed. (3)	
SW5	Needle Di	splay	"Bar" mode	de.		"Needle" mode
SW6	Fast baud		9600 Baud			115,200 baud
SW7		SW8		SMDP Address	Мо	de
ON		ON		0xF0	RS232(1)	
OFF		ON		0xF1	RS485(2)	
ON		OFF		0xF2 RS4		485(2)
OFF/R	Removed	OFF/Removed		0xF3 RS4		485(2)

1: Make sure internal jumper J3 is removed for proper RS-232 operation

2: Internal jumper J3 may be installed for RS-485 line termination.

3: Switches SW1-SW4 only disable the actions from the pushbuttons on the SLL-N2 itself. All features of calibration and set-point changing are still allowed through the computer interface.

Table 2.5: Dipswitch definitions

SECTION 3

Installation

Installation

The SLL-N2 can be installed by connecting it directly to the sensor probe via the BNC connector. For remote mounting, a coaxial M/F cable may be used. Calibration must be performed with the cable in place, as changes in cable length affect calibration.

The SLL-N2 requires 5VDC power for operation. This can be provided using an optional wall power adaptor (SPN 398-061), which plugs into the bottom of the SLL-N2 case, or via an optional power supply/relay board (SPN 502-263), connected via the DB-9 connector on the back cover.

SECTION 4

Calibration and Theory

Calibration and Theory

Theory of operation:

The sensor acts as capacitor, whose capacitance changes with the average dielectric constant of the material surrounding it. The SLL-N2 measures this capacitance to determine the level based on the calibration settings. The capacitance of the sensor is a function of the ratio of the dielectric constant of the liquid to the dielectric constant of the vapor. Therefore, in order to measure liquid level, the main assumption is that the dielectric constant of the liquid is different than the dielectric constant of the vapor.

Use of liquid measurement for materials other than LN₂

To use the SLL-N2 to measure materials other than LN_2 , you need to consider the following:

- Compatibility of the sensor with the liquid and tank (corrosive, reactive, high pressure, and other conditions are challenging and sometimes impossible for the sensor). Sycon does not guarantee the fitness of our sensors with any liquid other than LN₂ at low pressure.
- Variations of the dielectric constant of the liquid with changes in pressure and temperature of the liquid can cause reading fluctuations.
- Sycon does not allow use of the SLL-N2 or sensors in explosive environments!
- The dielectric constant of the liquid and surrounding vapor affects the maximum sensor length and SLL-N2 sensitivity (resolution). See equations below for details.

Formula for maximum sensor length:

Lmax = Cg/(Ks * RI)

Where:

Lmax is sensor maximum length in cm

Cg is maximum measurable capacitance of the SLL-N2 in pF (6500 for this SLL-N2)

Ks is sensor constant [in pf/cm in dry air], (2.2814 for standard Sycon sensor) RI is relative permittivity (also called dielectric constant) of the liquid to be measured.

For example, if you'd like to use the SLL-N2 to measure water level, determine the maximum active length of the sensor (water has a relative permittivity of 80) Lmax = $6500/2.2814 * 80 \approx 35$ cm ≈ 13 in.

Formula for level resolution in cm:

Res = Rc / (Ks * (RI - Rv))

Res = resolution in cm (the minimum change in level the SLL-N2 can measure)

Where:

Rc = SLL-N2 resolution in pF (0.15 pF per count for this SLL-N2) Ks and Rl are defined above Rv is the relative permittivity of the vapor surrounding the sensor, usually the vapor form of the liquid to be measured.

Note that in this equation, if RI = Rv (the dielectric constants of the liquid and the vapor surrounding the SLL-N2) are equal, the result is "infinity"; that is to say, the SLL-N2 cannot measure any change.

Calibration Procedure for use with LN2:

Performing a calibration allows the SLL-N2 to 'know' the liquid level inside the tank. The calibration is what allows the SLL-N2 to work with different length sensors. Once the SLL-N2 is calibrated with the sensor, the liquid level can be displayed and controlled accurately.

- 1. Make sure SW1 is off.
- 2. Perform 'empty' (low level) calibrate. Connect the sensor to the SLL-N2, and with the sensor in dry air or nitrogen, press and hold the '1' button until the LEDs flash on the front. At this point you should notice the far left LED on the LED bar has stopped blinking.
- 3. Next, to perform full (highest level) calibrate. Place the sensor in the LN2 up to the maximum level (active length). With the sensor submerged to it's active length, press and hold the '2' button until the LEDs flash on the front. At this point you should notice the far right LED on the LED bar has stopped blinking.
- 4. (Highly recommended) Turn SLL-N2 off, remove cover, and turn SW1 and SW4 ON. This prevents the calibration data from being accidentally erased when performing other functions.
- 5. (Optional) With the Low and High-level SLL-N2 calibration performed, it would be a good idea to capture the settings using the included LabVIEW program. This way, if the calibration is lost it can be restored without following this procedure.

Set-point adjustment procedures

The set-points control the level in the tank by controlling the fill relay at certain liquid levels. If the liquid level exceeds the high level set-point, the fill relay will be turned off (deactivated or opened). If the liquid level is below the low level set-point, the fill relay will be turned on (activated or closed).

- Set-point adjustment procedure 1 (easiest):
 - 1. Connect the SLL-N2 to a computer and establish communication the included LabVIEW software.
 - 2. Using the included software, adjust the SLL-N2 minimum and maximum level set-points under 'set point control'.
- Set-point adjustment procedure 2:

This procedure can be performed without a computer, and steps 2 + 3 need not be performed in order (may be swapped):

- 1. Make sure SW3 is off.
- 2. With the liquid level at the desired high level, press and hold the '2' and '4' buttons until the LEDs flash on the front.
- 3. With the liquid level at the desired low level, press and hold the '1' and '3' buttons until the LEDs flash on the front.
- 4. (Highly recommended) Turn SLL-N2 off, remove cover, and turn SW3 and SW4 ON. This prevents the calibration data from being accidentally erased when performing other functions.

SECTION 5

Troubleshooting

Troubleshooting

The SLL-N2 indicates errors via the front panel LEDs. Error indications can be interpreted using the information presented in the "User Interface Quick Reference" section in Chapter 1.

APPENDIX A

Serial Communications

Serial Communications:

The SLL-N2 comes with the most flexible communications in the industry. The SLL-N2 uses Sycon's "SMDP" protocol, including IEC commands subset. For more information on this protocol and packet formats, see the SMDP specification manual.

The SLL-N2 comes standard with a dual mode serial port, capable of RS-232 and RS-485 (2-wire) communication. Use the RS-232 for easy connectivity to a host computer. Use RS-485 for long cable runs (1000ft) and/or for multi-drop applications (connecting 2 or more SLL-N2s on the same network).

Hash	Туре	Description
code		
(hex)		
A676	Integer, Read only	System error code
8425	Boolean, Read only	TRUE if SLL-N2 has been "full" calibrated
1BBD	Boolean, Read only	TRUE if SLL-N2 has been "empty" calibrated
91C5	Boolean	True if SLL-N2 is in "force fill on" mode
1ECB	Boolean	True if SLL-N2 is in "force fill off" mode
F268	Integer, Read only	Level in %
695B	Integer, Read only	Freq in HZ
5D5B	Integer, Read only	Measurement serial number
1B76	Integer, Read only	Level in percent, encoded as 32 bit float
2F8A	Integer, Read only	32 assorted Boolean values (see table below)
5BF8	Integer, Read only	32 bits representing the user interface, see table below
303D	Integer, Write reset	Minimum level seen since power up. Writing any value to this
		variable resets it to the current level.
0F64	Integer, Write reset	Minimum level seen since power up. Writing any value to this
		variable resets it to the current level.

Table A.1: Other assorted variables available through serial interface

D31D2	D23	D22	D21	D20	D19	D18D1	D0
0	Standby LED	Fill LED	Comm LED	Error LED	LED Bar far Right	LEDs on LED bar, right to left	LED bar, far left

Note: a '1' on the bit cell means the LED is ON

Table A.2: Key for "5BF8" variable query

D15 (2)	D14 … (2) D9	D8 (2)	D7 (2)	D6 (2)	D5 (2)	D4 (2)	D3 (3)	D2 (3)	D1 (1)	D0 (1)
DIP SW8	SW7 SW2	DIP SW1	PB SW4 (right)	PB SW3	PB SW2	PB SW1 (left)	Cal error	Freq error	Alarm relay	Fill relay

1: A '1' in the bit cell means the relay is energized 2: A '1' in the bit cell means the switch is pressed or 'ON'

3: A '1' in the bit cell means the condition exists

Table A.3: Key for "5F8A" status query Bits D0-D15

D31D20	D19	D18	D17	D16
0	Alias for 1ECB	Alias for 91C5	Alias for 1BBD	Alias for 8425

Table A.4: Key for "5F8A" status query Bits D16-D31

APPENDIX B

External Connections

External connections:

The SLL-N2 has a DB9 connector for interfacing to the plant. On this connector are connections for 2 relays (normally open dry contact), serial communication, and power. See table below:

DB9 Pin#	Name	Function	Notes	
1	RLY_COM	Relays COM pin common		
2	RxD/B+	RS232 receive/RS485 non-inverting		
3	TxD/B-	RS232 transmit/RS485 inverting		
4	GND	Ground for power	Pins 4+5 connected	
5	GND	Ground for communications	together internally	
6	RLY1_NO	Relay 1 (alarm) normally open contact connection		
7	RLY2_NO	Relay 2 (fill) normally open contact connection		
8	VCC_ALT	+4.5-5VDC External power input.	Pins 8+9 connected	
9	VCC_ALT	+4.5-5VDC External power input.	together internally	

Table B.1: DB-9 pin-out

Relay 1 (alarm relay) operation:

This relay is activated (closed) when any of the following conditions occur:

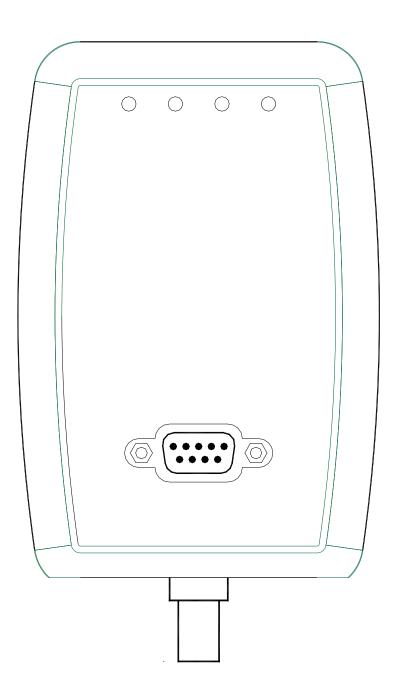
- The liquid level is lower than the alarm low set-point;
- The liquid level is higher than the alarm high set-point;
- The SLL-N2 cannot obtain a reading from the sensor (error LED blinking)
- The sensor reading is out of range (error LED on solid)

Relay 2 (fill relay) operation:

This relay is activated when the measured liquid level is below the low level set-point for n measurements in a row, where n is the programmed "Fill Relay Delay ON" parameter. This relay is deactivated when the measured liquid level gets above the high level set-point for n measurements in a row, where n is the programmed "Fill Relay Delay OFF" parameter. Also, this relay may be forced activated/deactivated by the push button switches (see table 3) or computer interface, placing the SLL-N2 in the force fill on or force fill off mode. If the error LED is on or blinking (indicating a damaged sensor or gauge) the fill relay retains its last state.

Relay 2 (fill relay) timeout:

Furthermore, this relay is forced de-activated (the SLL-N2 is placed into the 'force fill off mode') if this relay has been activated for longer than the Fill Relay Timeout. The 'Fill Relay Timeout' takes priority even over the 'Force Fill ON' mode.


Note: For OEM customers, relay operation, parameter defaults, and SLL-N2 operation can be customized. Contact Sycon at 315-463-5297 (US) for more information.

INDEX

<u>Index</u>

Accuracy Alarm relay	35
Back panel	
Blink	
Calibration	
Calibration procedure for use wit	
LN ₂	22
Comm	8
Dipswitch settings	10
Equipment Return	i
Error	7
Explosive environments	
External connections	
Fill relay	35
Fill set-point High set	12
Fill set-point Low set	12
Flash	
Flicker	
Force fill	
Front panel	
High level calibrate	
Installation	
LED test	

Low level calibrate	
Operation	7, 12
POST-2 mode	10
POST-2 screen	10
Power	8
Power supply/relay board	17
Programmable parameters	
Quick Reference	
Relay 1	
Relay 2	
Relay contacts	1
Restore all factory settings	12
Restore factory calibration	12
Restore factory fill set-points	12
Return Authorization	i
Serial communications	31
Set-point adjustment procedures	22
Software version	10
Specifications	
Standby	7
Theory	
Troubleshooting	27
Wall power adapter	

Sycon Instruments 6757 Kinne Street East Syracuse, New York 13057-1215 V (315) 463-5297 F (315) 463-5298 info@sycon.com